Published September 17, 2018
| Version v1
Publication
Pedestal and Er profile evolution during an edge localized mode cycle at ASDEX Upgrade
Description
The upgrade of the edge charge exchange recombination spectroscopy diagnostic at ASDEX
Upgrade has enabled highly spatially resolved me
asurements of the impurity ion dynamics during an
edge-localized mode cycle
(
ELM
)
with unprecedented temp
oral resolution, i.e. 65
μ
s. The increase of
transport during an ELM induces a relaxation of the
ion, electron edge gradients in impurity density
and
fl
ows. Detailed characterization of the recovery
of the edge temperature gradients reveals a
difference in the ion and electron channe
l: the maximum ion temperature gradient
T
i
is
re-established on similar timescales as
n
e
, which is faster than the recovery of
T
e
.Afterthe
clamping of the maximum gradient,
T
i
and
T
e
at the pedestal top continue to rise up to the next ELM
while
n
e
stays constant which means that the temperatur
e pedestal and the resu
lting pedestal pressure
widen until the next ELM. The edge radial electric
fi
eld
E
r
at the ELM crash is found to reduce to
typical L-mode values and its ma
ximum recovers to its pre-ELM conditions on a similar time scale as
for
n
e
and
T
i
. Within the uncertainties, the measurements of
E
r
align with their neoclassical
predictions
E
r,neo
for most of the ELM cycle, thus indicating that
E
r
is dominated by collisional
processes. However, between 2 and 4 ms af
ter the ELM crash, other contributions to
E
B
́
fl
ow,
e.g. zonal
fl
ows or ion orbit effects, could not be
excluded within the uncertainties.
Abstract
European Commission (EUROfusion 633053)Additional details
Identifiers
- URL
- https://idus.us.es/handle//11441/78538
- URN
- urn:oai:idus.us.es:11441/78538
Origin repository
- Origin repository
- USE