Published January 1, 2009
| Version v1
Publication
Hidden convexity in some nonlinear PDEs from geometry and physics
Creators
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Institut Wolfgang Döblin (IWD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-07-BLAN-0235,OTARIE,Optimal Transport: Theory and Applications to cosmological Reconstruction and Image processing(2007)
Description
The purpose of the present paper is to show few examples of nonlinear PDEs (mostly with strong geometric features) for which there is a hidden convex structure. This is not only a matter of curiosity. Once the convex structure is unrevealed, robust existence and uniqueness results can be unexpectedly obtained for very general data. Of course, as usual, regularity issues are left over as a hard post-process, but, at least, existence and uniqueness results are obtained in a large framework. The paper will address: THE MONGE-AMPERE EQUATION, THE EULER EQUATION, MULTIDIMENSIONAL HYPERBOLIC SCALAR CONSERVATION LAWS AND THE BORN-INFELD SYSTEM.
Additional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00361725
- URN
- urn:oai:HAL:hal-00361725v1
Origin repository
- Origin repository
- UNICA