Published 2021
| Version v1
Journal article
Revealing asymmetrical dust distribution in the inner regions of HD 141569
Creators
- Singh, G.
- Bhowmik, T.
- Boccaletti, A.
- Thébault, P.
- Kral, Q.
- Milli, J.
- Mazoyer, J.
- Pantin, E.
- van Holstein, R. G.
- Olofsson, J.
- Boukrouche, R.
- Di Folco, E.
- Janson, M.
- Langlois, M.
- Maire, A.-L.
- Vigan, A.
- Benisty, M.
- Augereau, J.-C.
- Perrot, C.
- Gratton, R.
- Henning, T.
- Ménard, F.
- Rickman, E.
- Wahhaj, Z.
- Zurlo, A.
- Biller, B.
- Bonnefoy, M.
- Chauvin, G.
- Delorme, P.
- Desidera, S.
- D'orazi, V.
- Feldt, M.
- Hagelberg, J.
- Keppler, M.
- Kopytova, T.
- Lagadec, E.
- Lagrange, A.-M.
- Mesa, D.
- Meyer, M.
- Rouan, D.
- Sissa, E.
- Schmidt, T. O. B.
- Jaquet, M.
- Fusco, Thierry
- Pavlov, A.
- Rabou, P.
Contributors
Others:
- Max Planck Institute for the Structure and Dynamics of Matter (MPSD)
- Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Bordelais de Recherche en Informatique (LaBRI) ; Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
- Centre de Bioinformatique de Bordeaux (CBIB) ; CGFB
- European Southern Observatory [Santiago] (ESO) ; European Southern Observatory (ESO)
- Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Leiden Observatory [Leiden] ; Universiteit Leiden [Leiden]
- Max-Planck-Institut für Astronomie (MPIA) ; Max-Planck-Gesellschaft
- AMOR 2017 ; Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB) ; Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Department of Astronomy ; Stockholm University
- Laboratoire d'Astrophysique de Marseille (LAM) ; Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Centre de Recherche Astrophysique de Lyon (CRAL) ; École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- INAF - Osservatorio Astronomico di Padova (OAPD) ; Istituto Nazionale di Astrofisica (INAF)
- Institut de Planétologie et d'Astrophysique de Grenoble (IPAG) ; Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
- Observatoire des Sciences de l'Univers de Grenoble (OSUG ) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
- Observatoire Astronomique de l'Université de Genève (ObsGE) ; Université de Genève = University of Geneva (UNIGE)
- Geneva Observatory ; Université de Genève = University of Geneva (UNIGE)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Westfälische Wilhelms-Universität Münster = University of Münster (WWU)
- DOTA, ONERA, Université Paris Saclay [Palaiseau] ; ONERA-Université Paris-Saclay
- Bulgarian Academy of Sciences (BAS)
- SPHERE is an instrument designed and built by a consortium consisting of IPAG (Grenoble, France), MPIA (Heidelberg, Germany), LAM (Marseille, France), LESIA (Paris, France), Laboratoire Lagrange (Nice, France), INAF-Osservatorio di Padova (Italy), Observatoire de Genève (Switzerland), ETH Zurich (Switzerland), NOVA (Netherlands), ONERA (France) and ASTRON (Netherlands) in collaboration with ESO. SPHERE was funded by ESO, with additional contributions from CNRS (France), MPIA (Germany), INAF (Italy), FINES (Switzerland) and NOVA (Netherlands). SPHERE also received funding from the European Commission Sixth and Seventh Framework Programmes as part of the Optical Infrared Coordination Network for Astronomy (OPTICON) under grant number RII3-Ct-2004-001566 for FP6 (2004-2008), grant number 226604 for FP7 (2009 - 2012) and grant number 312430 for FP7 (2013–2016). G. S. would like to acknowledge the funding received from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 798909. G. S. would also like to thank Dr. Elodie Choquet for her suggestions in Sect. 4. French co-authors acknowledge financial support from the Programme National de Planétologie (PNP) and the Programme National de Physique Stellaire (PNPS) of CNRS-INSU in France. J. O. acknowledges support by ANID, – Millennium Science Initiative Program – NCN19_171, from the Universidad de Valparaíso, and from Fondecyt (grant 1180395). C. P. acknowledges financial support from Fondecyt (grant 3190691) and support by ANID, – Millennium Science Initiative Program – NCN19_171. A.V. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 757561). A.Z. acknowledges support from the FONDECYT Iniciación en investigación project number 11190837. Finally, this work has made use of the SPHERE Data Centre, jointly operated by OSUG/IPAG (Grenoble), PYTHEAS/LAM/CESAM (Marseille), OCA/Lagrange (Nice) and Observatoire de Paris/LESIA (Paris). We thank P. Delorme and E. Lagadec (SPHERE Data Centre) for their efficient help during the data reduction process.
Description
Context. The combination of high-contrast imaging with spectroscopy and polarimetry offers a pathway to studying the grain distribution and properties of debris disks in exquisite detail. Here, we focus on the case of a gas-rich debris disk around HD 141569A, which features a multiple-ring morphology first identified with SPHERE in the near-infrared.Aims. We obtained polarimetric differential imaging with SPHERE in the H-band to compare the scattering properties of the innermost ring at 44 au with former observations in total intensity with the same instrument. In polarimetric imaging, we observed that the intensity of the ring peaks in the south-east, mostly in the forward direction, whereas in total intensity imaging, the ring is detected only at the south. This noticeable characteristic suggests a non-uniform dust density in the ring. With these two sets of images, we aim to study the distribution of the dust to solve for the actual dust distribution.Methods. We implemented a density function varying azimuthally along the ring and generated synthetic images both in polarimetry and in total intensity, which are then compared to the actual data. The search for the best-fit model was performed both with a grid-based and an MCMC approach. Using the outcome of this modelization, we further measured the polarized scattering phase function for the observed scattering angle between 33° and 147° as well as the spectral reflectance of the southern part of the ring between 0.98 and 2.1 μm. We tentatively derived the grain properties by comparing these quantities with MCFOST models and assuming Mie scattering.Results. We find that the dust density peaks in the south-west at an azimuthal angle of 220°~238° with a rather broad width of 61°~127°. The difference in the intensity distributions observed in polarimetry and total intensity is the result of this particular morphology. Although there are still uncertainties that remain in the determination of the anisotropic scattering factor, the implementation of an azimuthal density variation to fit the data proved to be robust. Upon elaborating on the origin of this dust density distribution, we conclude that it could be the result of a massive collision when we account for the effect of the high gas mass that is present in the system on the dynamics of grains. In terms of grain composition, our preliminary interpretation indicates a mixture of porous sub-micron sized astro-silicate and carbonaceous grains.Conclusions. The SPHERE observations have allowed, for the first time, for meaningful constraints to be placed on the dust distribution beyond the standard picture of a uniform ring-like debris disk. However, future studies with a multiwavelength approach and additional detailed modeling would be required to better characterize the grain properties in the HD 141569 system.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-03341514
- URN
- urn:oai:HAL:hal-03341514v1
Origin repository
- Origin repository
- UNICA