Published December 16, 2021 | Version v1
Publication

User-centric Adaptation Analysis of Multi-tenant Services

Description

Multi-tenancy is a key pillar of cloud services. It allows different users to share computing and virtual resources transparently, meanwhile guaranteeing substantial cost savings. Due to the tradeoff between scalability and customization, one of the major drawbacks of multi-tenancy is limited configurability. Since users may often have conflicting configuration preferences, offering the best user experience is an open challenge for service providers. In addition, the users, their preferences, and the operational environment may change during the service operation, thus jeopardizing the satisfaction of user preferences. In this article, we present an approach to support user-centric adaptation of multi-tenant services. We describe how to engineer the activities of the Monitoring, Analysis, Planning, Execution (MAPE) loop to support user-centric adaptation, and we focus on adaptation analysis. Our analysis computes a service configuration that optimizes user satisfaction, complies with infrastructural constraints, and minimizes reconfiguration obtrusiveness when user- or service-related changes take place. To support our analysis, we model multitenant services and user preferences by using feature and preference models, respectively. We illustrate our approach by utilizing different cases of virtual desktops. Our results demonstrate the effectiveness of the analysis in improving user preferences satisfaction in negligible time.

Abstract

Ministerio de Economía y Competitividad TIN2012-32273

Abstract

Junta de Andalucía P12--TIC--1867

Abstract

Junta de Andalucía TIC-5906

Additional details

Created:
March 27, 2023
Modified:
November 30, 2023