Published March 5, 2024
| Version v1
Journal article
Pair-Matching: Link Prediction with Adaptive Queries
Contributors
Others:
- Laboratoire de Mathématiques d'Orsay (LMO) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Statistique mathématique et apprentissage (CELESTE) ; Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Mathématiques d'Orsay (LMO) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Traitement et Communication de l'Information (LTCI) ; Institut Mines-Télécom [Paris] (IMT)-Télécom Paris
- Télécom Paris
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- Centre de Recherche en Économie et Statistique (CREST) ; Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)-École polytechnique (X)-École Nationale de la Statistique et de l'Administration Économique (ENSAE Paris)-Centre National de la Recherche Scientifique (CNRS)
- École Nationale de la Statistique et de l'Administration Économique (ENSAE Paris)
- ANR-19-CHIA-0021,BISCOTTE,Approches statistiquement et computationnellement efficicaces pour l'intelligence artificielle(2019)
- ANR-21-CE23-0035,ASCAI,Segmentation, clustering, et seriation actifs et passifs: vers des fondations unifiées en IA(2021)
Description
The pair-matching problem appears in many applications where one wants to discover good matches between pairs of entities or individuals. Formally, the set of individuals is represented by the nodes of a graph where the edges, unobserved at first, represent the good matches. The algorithm queries pairs of nodes and observes the presence/absence of edges. Its goal is to discover as many edges as possible with a fixed budget of queries. Pair-matching is a particular instance of multi-armed bandit problem in which the arms are pairs of individuals and the rewards are edges linking these pairs. This bandit problem is non-standard though, as each arm can only be played once.Given this last constraint, sub-linear regret can be expected only if the graph presents some underlying structure. This paper shows that sub-linear regret is achievable in the case where the graph is generated according to a Stochastic Block Model (SBM) with two communities. Optimal regret bounds are computed for this pair-matching problem. They exhibit a phase transition related to the Kesten-Stigum threshold for community detection in SBM. The pair-matching problem is considered in the case where each node is constrained to be sampled less than a given amount of times. We show how optimal regret rates depend on this constraint. The paper is concluded by a conjecture regarding the optimal regret when the number of communities is larger than 2. Contrary to the two communities case, we argue that a statistical-computational gap would appear in this problem.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04578273
- URN
- urn:oai:HAL:hal-04578273v1
Origin repository
- Origin repository
- UNICA