Published September 4, 2023
| Version v1
Conference paper
Online change point detection on Riemannian manifolds with karcher mean estimates
Contributors
Others:
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Centre de Recherche en Automatique de Nancy (CRAN) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- ANR-19-CE48-0002,DARLING,Adaptation et apprentissage distribués pour les signaux sur graphe(2019)
Description
Online detection of abrupt changes in streaming time series is a challenging problem with many applications, in particular when little prior knowledge of the statistics of the data is available and computation resources are scarce. While many algorithms have been developed for Euclidean spaces, there is a wealth of data that belongs to Riemannian manifolds. Taking the geometry of the data space into account is however paramount in designing effective change point detection algorithms. In this paper, we propose a non-parametric online algorithm to detect abrupt changes in manifold-valued data streams. The proposed method monitors abrupt changes in the Karcher mean of the data using a stochastic Riemannian optimization algorithm. Experiments with both synthetic and real data illustrate the performance of the proposed method.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04329630
- URN
- urn:oai:HAL:hal-04329630v1
Origin repository
- Origin repository
- UNICA