Published 2016 | Version v1
Journal article

Proper orientation of cacti

Others:
Parallelism, Graphs and Optimization Research Group (ParGO) ; Universidade Federal do Ceará = Federal University of Ceará (UFC)
Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
FUNCAP/CNRS project GAIATO INC-0083- 00047.01.00/13
ANR-13-BS02-0007,Stint,Structures Interdites(2013)

Description

An orientation of a graph G is proper if two adjacent vertices have different in-degrees. The proper-orientation number − → χ (G) of a graph G is the minimum maximum in-degree of a proper orientation of G. In [1], the authors ask whether the proper orientation number of a planar graph is bounded. We prove that every cactus admits a proper orientation with maximum in-degree at most 7. We also prove that the bound 7 is tight by showing a cactus having no proper orientation with maximum in-degree less than 7. We also prove that any planar claw-free graph has a proper orientation with maximum in-degree at most 6 and that this bound can also be attained.

Abstract

International audience

Additional details

Created:
February 28, 2023
Modified:
November 28, 2023