High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out
Description
Developing wide-area cryogenic light detectors with baseline resolution better than 20 eV is one of the priorities of next generation bolometric experiments searching for rare interactions, as the simultaneous read-out of the light and heat signals enables background suppression through particle identification. Among the proposed technological approaches for the phonon sensor, the naturally multiplexed Kinetic Inductance Detectors (KIDs) stand out for their excellent intrinsic energy resolution and reproducibility. The potential of this technique was proved by the CALDER project that reached a baseline resolution of 154 ± 7 eV RMS by sampling a 2 × 2 cm2 Silicon substrate with 4 Aluminum KIDs. In this paper, we present a prototype of Aluminum KID with improved geometry and quality factor. The design improvement, as well as the combined analysis of amplitude and phase signals, allowed to reach a baseline resolution of 82 ± 4 eV by sampling the same substrate with a single Aluminum KID.
Additional details
- URL
- http://hdl.handle.net/11567/860750
- URN
- urn:oai:iris.unige.it:11567/860750
- Origin repository
- UNIGE