Published May 2024
| Version v1
Publication
General oracle inequalities for a penalized log-likelihood criterion based on non-stationary data
- Others:
- Université Côte d'Azur (UniCA)
- Laboratoire Jean Alexandre Dieudonné (LJAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- Centre National de la Recherche Scientifique (CNRS)
- This work was supported by the French government, through the UCA^Jedi and 3IA Côte d'Azur Investissements d'Avenir managed by the National Research Agency (ANR-15- IDEX-01 and ANR-19-P3IA-0002), by the interdisciplinary Institute for Modeling in Neuroscience and Cognition (NeuroMod) of the Université Côte d'Azur and directly by the National Research Agency ANR-08-JCJC-0125-01, ANR-19-CE40-0024 with the ChaMaNe project, MITI AAP "défi modélisation du vivant" with DYNAMO project and AAP 80PRIME with eXpLAIn. It is part of the ComputaBrain project.
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- ANR-19-CE40-0024,ChaMaNe,Enjeux mathématiques issus des neurosciences(2019)
- ANR-08-JCJC-0125,Striatum and sp,La navigation spatiale et le codage de la récompense : implication des différentes régions du striatum au sein du réseau limbique, chez le rat.(2008)
Description
We prove oracle inequalities for a penalized log-likelihood criterion that hold even if the data are not independent and not stationary, based on a martingale approach. The assumptions are checked for various contexts: density estimation with independent and identically distributed (i.i.d) data, hidden Markov models, spiking neural networks, adversarial bandits. In each case, we compare our results to the literature, showing that, although we lose some logarithmic factors in the most classical case (i.i.d.), these results are comparable or more general than the existing results in the more dependent cases.
Additional details
- URL
- https://hal.science/hal-04578260
- URN
- urn:oai:HAL:hal-04578260v2
- Origin repository
- UNICA