Published June 13, 2010
| Version v1
Conference paper
Persistence-based Segmentation of Deformable Shapes
Contributors
Others:
- Geometric computing (GEOMETRICA) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Computer Science Department [Stanford] ; Stanford University
- Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX) ; École polytechnique (X) ; Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)
Description
In this paper, we combine two ideas: persistence-based clustering and the Heat Kernel Signature (HKS) function to obtain a multi-scale isometry invariant mesh segmentation algorithm. The key advantages of this approach is that it is tunable through a few intuitive parameters and is stable under near-isometric deformations. Indeed the method comes with feedback on the stability of the number of segments in the form of a persistence diagram. There are also spatial guarantees on part of the segments. Finally, we present an extension to the method which first detects regions which are inherently unstable and segments them separately. Both approaches are reasonably scalable and come with strong guarantees. We show numerous examples and a comparison with the segmentation benchmark and the curvature function.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-00772475
- URN
- urn:oai:HAL:hal-00772475v1
Origin repository
- Origin repository
- UNICA