A radiological approach to evaluate bone graft integration in reconstructive surgeries
Citation
Description
(1) Background: Bone tissue engineering is a promising tool to develop new smart solutions for regeneration of complex bone districts, from orthopedic to oral and maxillo-facial fields. In this respect, a crucial characteristic for biomaterials is the ability to fully integrate within the patient body. In this work, we developed a novel radiological approach, in substitution to invasive histology, for evaluating the level of osteointegration and osteogenesis, in both qualitative and quantitative manners. (2) SmartBone®, a composite xeno-hybrid bone graft, was selected as the base material because of its remarkable effectiveness in clinical practice. Using pre- and post-surgery computed tomography (CT), we built 3D models that faithfully represented the patient's anatomy, with special attention to the bone defects. (3) Results: This way, it was possible to assess whether the new bone formation respected the natural geometry of the healthy bone. In all cases of the study (four dental, one maxillo-facial, and one orthopedic) we evaluated the presence of new bone formation and volumetric increase. (4) Conclusion: The newly established radiological protocol allowed the tracking of SmartBone®effective integration and bone regeneration. Moreover, the patient's anatomy was completely restored in the defect area and functionality completely rehabilitated without foreign body reaction or inflammation.
Additional details
- URL
- http://hdl.handle.net/11567/1019987
- URN
- urn:oai:iris.unige.it:11567/1019987
- Origin repository
- UNIGE