Functions and References in the Pi-Calculus: Full Abstraction and Proof Techniques
- Creators
- Prebet, Enguerrand
- Others:
- École normale supérieure - Lyon (ENS Lyon)
- Foundations of Component-based Ubiquitous Systems (FOCUS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Dipartimento di Informatica - Scienza e Ingegneria [Bologna] (DISI) ; Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)
- Laboratoire de l'Informatique du Parallélisme (LIP) ; École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
- Preuves et Langages (PLUME) ; Laboratoire de l'Informatique du Parallélisme (LIP) ; École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
- Vinci 2020
Description
We present a fully abstract encoding of λ ref , the call-by-value λ-calculus with references, in the πcalculus. By contrast with previous full abstraction results for sequential languages in the π-calculus, the characterisation of contextual equivalence in the source language uses a labelled bisimilarity. To define the latter equivalence, we refine existing notions of typed bisimulation in the π-calculus, and introduce in particular a specific component to handle divergences. We obtain a proof technique that allows us to prove equivalences between λ ref programs via the encoding. The resulting proofs correspond closely to normal form bisimulations in the λ-calculus, making proofs in the π-calculus expressible as if reasoning in λ ref. We study how standard and new up-to techniques can be used to reason about diverging terms and simplify proofs of equivalence using the bisimulation we introduce. This shows how the π-calculus theory can be used to prove interesting equivalences between λ ref programs, using algebraic reasoning and up-to techniques.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-03920025
- URN
- urn:oai:HAL:hal-03920025v1
- Origin repository
- UNICA