CONFAC Decomposition Approach to Blind Identification of Underdetermined Mixtures Based on Generating Function Derivatives
- Others:
- Wireless Telecom Research Group [Fortaleza] (GTEL) ; Universidade Federal do Ceará = Federal University of Ceará (UFC)
- Processus de Transfert et d'Echanges dans l'Environnement - EA 3819 (PROTEE) ; Université de Toulon (UTLN)
- Psychometrics and Statistics Group ; University of Groningen [Groningen]
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- GIPSA - Communication Information and Complex Systems (GIPSA-CICS) ; Département Images et Signal (GIPSA-DIS) ; Grenoble Images Parole Signal Automatique (GIPSA-lab) ; Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab) ; Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Citation
Description
This work proposes a new tensor-based approach to solve the problem of blind identification of underdetermined mixtures of complex sources exploiting the cumulant generating function (CGF) of the observations. We show that a collection of second-order derivatives of the CGF of the observations can be stored in a third-order tensor following a constrained factor (CONFAC) decomposition with known constrained structure. In order to increase the diversity, we combine three derivative types into an extended third-order CONFAC decomposition. A detailed uniqueness study of this decomposition is provided, from which easy-to-check sufficient conditions ensuring the essential uniqueness of the mixing matrix are obtained. From an algorithmic viewpoint, we develop a CONFAC-based enhanced line search (CONFAC-ELS) method to be used with an alternating least squares estimation procedure for accelerated convergence, and also analyze the numerical complexities of two CONFAC-based algorithms (namely, CONFAC-ALS and CONFAC-ELS) in comparison with the Leverberg-Marquardt (LM)-based algorithm recently derived to solve the same problem. Simulation results compare the proposed approach with some higher-order methods. Our results also corroborate the advantages of the CONFAC-based approach over the competing LM-based approach in terms of performance and computational complexity.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00739130
- URN
- urn:oai:HAL:hal-00739130v1
- Origin repository
- UNICA