Published January 25, 2019
| Version v1
Publication
Robust classification with feature selection using alternating minimization and Douglas-Rachford splitting method
Contributors
Others:
- Centre de recherches insulaires et observatoire de l'environnement (CRIOBE) ; Université de Perpignan Via Domitia (UPVD)-École pratique des hautes études (EPHE) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Mathematics for Control, Transport and Applications (McTAO) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Projet MEDIACODING ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
This paper deals with supervised classification and feature selection. A classical approach is to project data on a low dimensional space with a strict control on sparsity. This results in an optimization problem minimizing the within sum of squares in the clusters (Frobenius norm) with an 1 penalty in order to promote sparsity. It is well known though that the Frobenius norm is not robust to outliers. In this paper, we propose an alternative approach with an 1 norm minimization both for the constraint and the loss function. Since the 1 criterion is only convex and not gradient Lipschitz, we advocate the use a Douglas-Rachford approach. We take advantage of the particular form of the cost and, using a change of variable, we provide a new efficient tailored primal Douglas-Rachford splitting algorithm. We also provide an efficient classifier in the projected space based on medoid modeling. The resulting algorithm, based on alternating minimization and primal Douglas-Rachford splitting, is coined ADRS. Experiments on biological data sets and computer vision dataset show that our method significantly improves the results obtained with a quadratic loss function.
Additional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-01993753
- URN
- urn:oai:HAL:hal-01993753v1
Origin repository
- Origin repository
- UNICA