Published 2019
| Version v1
Journal article
Exploiting locality and translational invariance to design effective Deep Reinforcement Learning control of the 1-dimensional unstable falling liquid film
Contributors
Others:
- University of Oslo (UiO)
- Centre de Mise en Forme des Matériaux (CEMEF) ; Mines Paris - PSL (École nationale supérieure des mines de Paris) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Tianjin University (TJU)
- This work was performed thanks to funding received by the University of Oslo in the context of the "DOFI" project ( Grant No. 280625)
Description
Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic and industrial interest. However, this has proven challenging in most cases due to the strong nonlinearity and high dimensionality of the underlying equations. In the present work, we successfully apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional (1D) depth-integrated falling liquid film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent, and we exploit locality of the control problem to define a dense reward function. This allows to both speed up learning considerably, and to easily control an arbitrary large number of jets and overcome the curse of dimensionality on the control output size that would take place using a naive approach. This illustrates the importance of the architecture of the agent for successful DRL control, and we believe this will be an important element in the effective application of DRL to large two-dimensional (2D) or three-dimensional (3D) systems featuring translational, axisymmetric or other invariance.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-02401501
- URN
- urn:oai:HAL:hal-02401501v1
Origin repository
- Origin repository
- UNICA