Published July 2012
| Version v1
Journal article
The functions erf and erfc computed with arbitrary precision and explicit error bounds
Creators
Contributors
Others:
- Analysis and Problems of Inverse type in Control and Signal processing (APICS) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Cryptology, Arithmetic: Hardware and Software (CARAMEL) ; Centre Inria de l'Université de Lorraine ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO) ; Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de l'Informatique du Parallélisme (LIP) ; École normale supérieure de Lyon (ENS de Lyon) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Description
The error function erf is a special function. It is widely used in statistical computations for instance, where it is also known as the standard normal cumulative probability. The complementary error function is defined as erfc(x)=erf(x)-1. In this paper, the computation of erf(x) and erfc(x) in arbitrary precision is detailed: our algorithms take as input a target precision t' and deliver approximate values of erf(x) or erfc(x) with a relative error bounded by 2^(-t'). We study three different algorithms for evaluating erf and erfc. These algorithms are completely detailed. In particular, the determination of the order of truncation, the analysis of roundoff errors and the way of choosing the working precision are presented. The scheme used for implementing erf and erfc and the proofs are expressed in a general setting, so they can directly be reused for the implementation of other functions. We implemented the three algorithms and studied experimentally what is the best algorithm to use in function of the point x and the target precision t'.
Abstract
The version available on the HAL server is slightly different from the published version because it contains full proofs.Abstract
International audienceAdditional details
Identifiers
- URL
- https://ens-lyon.hal.science/ensl-00356709
- URN
- urn:oai:HAL:ensl-00356709v3
Origin repository
- Origin repository
- UNICA