Published September 23, 2010
| Version v1
Conference paper
A Symbolic-Numeric Algorithm for Computing the Alexander Polynomial of a Plane Curve Singularity
Contributors
Others:
- Johann Radon Institute for Computational and Applied Mathematics (RICAM) ; Austrian Academy of Sciences (OeAW)
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- T. Ida and V. Negru and T. Jebelean and D. Petcu and S. M. Watt and D. Zaharie
Description
We report on a symbolic-numeric algorithm for computing the Alexander polynomial of each singularity of a plane complex algebraic curve defined by a polynomial with coefficients of limited accuracy, i.e. the coefficients are both exact and inexact data. We base the algorithm on combinatorial methods from knot theory which we combine with computational geometry algorithms in order to compute efficient and accurate results. Nonetheless the problem we are dealing with is ill-posed, in the sense that tiny perturbations in the coefficients of the defining polynomial cause huge errors in the computed results.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/inria-00542193
- URN
- urn:oai:HAL:inria-00542193v1
Origin repository
- Origin repository
- UNICA