Published September 7, 2014 | Version v1
Conference paper

In situ Probe Science at Saturn

Others:
University of Idaho [Moscow, USA]
Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)
Center for Radiophysics and Space Research, Cornell University (CRSR)
NASA/Goddard Space Flight Center (NASA/GSFC)
University of Michigan
NASA Ames Research Center (NASA Ames)
Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Pôle Planétologie du LESIA ; Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Flat Wavefronts
Observatoire de la Côte d'Azur (OCA) ; Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
NASA Jet Propulsion Lab / California Institute of Technology
Systems Engineering and Asssessment Ltd

Description

A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Several theories have been put forward to explain the process of solar system formation, and the origin and evolution of the giant planets and their atmospheres. Each theory offers quantifiable predictions of the abundances of noble gases He, Ne, Ar, Kr, and Xe, and abundances of key isotopic ratios 4He/3He, D/H, 15N/14N, 18O/16O, and 13C/12C. Detection of certain disequilibrium species, diagnostic of deeper internal processes and dynamics of the atmosphere, would also help discriminate between competing theories. Measurements of the critical abundance profiles of these key constituents into the deeper well-mixed atmosphere must be complemented by measurements of the profiles of atmospheric structure and dynamics at high vertical resolution and also require in situ exploration. The atmospheres of the giant planets can also serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets including Earth, and offer a context and provide a ground truth for exoplanets and exoplanetary systems. Additionally, Giant planets have long been thought to play a critical role in the development of potentially habitable planetary systems. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Saturn, a small, relatively shallow Saturn probe capable of measuring abundances and isotopic ratios of key atmospheric constituents, and atmospheric structure including pressures, temperatures, dynamics, and cloud locations and properties not accessible by remote sensing can serve to test competing theories of solar system and giant planet origin, chemical, and dynamical evolution.

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
November 28, 2023