Published July 2, 2013 | Version v1
Conference paper

Distributed dictionary learning over a sensor network

Others:
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL) ; Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Centrale Lille
Sequential Learning (SEQUEL) ; Laboratoire d'Informatique Fondamentale de Lille (LIFL) ; Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe ; Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Automatique, Génie Informatique et Signal (LAGIS) ; Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)
Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)

Description

We consider the problem of distributed dictionary learning, where a set of nodes is required to collec- tively learn a common dictionary from noisy measure- ments. This approach may be useful in several con- texts including sensor networks. Diffusion cooperation schemes have been proposed to solve the distributed linear regression problem. In this work we focus on a diffusion-based adaptive dictionary learning strategy: each node records observations and cooperates with its neighbors by sharing its local dictionary. The resulting algorithm corresponds to a distributed block coordi- nate descent (alternate optimization). Beyond dictio- nary learning, this strategy could be adapted to many matrix factorization problems and generalized to var- ious settings. This article presents our approach and illustrates its efficiency on some numerical examples.

Abstract

6 pages

Abstract

National audience

Additional details

Created:
December 2, 2022
Modified:
November 28, 2023