Comparing Different Supervised Approaches to Hate Speech Detection
- Others:
- Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Fondazione Bruno Kessler [Trento, Italy] (FBK)
Description
This paper reports on the systems the InriaFBK Team submitted to the EVALITA 2018-Shared Task on Hate Speech Detection in Italian Twitter and Facebook posts (HaSpeeDe). Our submissions were based on three separate classes of models: a model using a recurrent layer, an ngram-based neural network and a LinearSVC. For the Facebook task and the two cross-domain tasks we used the recurrent model and obtained promising results, especially in the cross-domain setting. For Twitter, we used an ngram-based neural network and the LinearSVC-based model.
Abstract (Italian)
Questo articolo descrive i modelli del team InriaFBK per lo Shared Task on Hate Speech Detection in Italian Twitter and Facebook posts (HaSpeeDe) di EVALITA 2018. Tre classi di modelli differenti sono state utilizzate: un model-lo che usa un livello ricorrente, una rete neurale basata su ngrammi e un modello basato su LinearSVC. Per Facebook e i due task cross-domain, sì e scelto un modello ricorrente che ha ottenuto buoni risultati, specialmente per quanto riguarda i task cross-domain. Per Twitter, sono stati utilizzati la rete neurale basata su ngrammi e il modello basato su LinearSVC.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01920266
- URN
- urn:oai:HAL:hal-01920266v1
- Origin repository
- UNICA