Published 2019
| Version v1
Journal article
On the maximal number of real embeddings of minimally rigid graphs in $\mathbb{R}^2$, $\mathbb{R}^3$ and $S^2$
Contributors
Others:
- AlgebRe, geOmetrie, Modelisation et AlgoriTHmes (AROMATH) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-National and Kapodistrian University of Athens (NKUA)
- National and Kapodistrian University of Athens (NKUA)
- Athena Research and Innovation Centre (ARC)
- Research Institute for Symbolic Computation (RISC) ; Johannes Kepler Universität Linz (JKU)
- Polynomial Systems (PolSys) ; Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-LIP6 ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN) ; Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Ioannis Emiris is partially supported, Evangelos Bartzos and Jan Legerský are fully supported by project ARCADES which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675789. Elias Tsigaridas is partially supported by ANR JCJC GALOP (ANR-17-CE40-0009), the PHC GRAPE, and by a public grant as part of the Investissement d'avenir project, reference ANR-11-LABX-0056- LMH, LabEx LMH, in a joint call with Gaspard Monge Program for optimization, operations research and their interactions with data sciences (PGMO grant ALMA).
- European Project: 675789,H2020 Pilier Excellent Science,H2020-MSCA-ITN-2015,ARCADES(2016)
Description
Rigidity theory studies the properties of graphs that can have rigid embeddings in a euclidean space $\mathbb{R}^d$ or on a sphere and other manifolds which in addition satisfy certain edge length constraints. One of the major open problems in this field is to determine lower and upper bounds on the number of realizations with respect to a given number of vertices. This problem is closely related to the classification of rigid graphs according to their maximal number of real embeddings.In this paper, we are interested in finding edge lengths that can maximize the number of real embeddings of minimally rigid graphs in the plane, space, and on the sphere. We use algebraic formulations to provide upper bounds. To find values of the parameters that lead to graphs with a large number of real realizations, possibly attaining the (algebraic) upper bounds, we use some standard heuristics and we also develop a new method inspired by coupler curves. We apply this new method to obtain embeddings in $\mathbb{R}^3$. One of its main novelties is that it allows us to sample efficiently from a larger number of parameters by selecting only a subset of them at each iteration. Our results include a full classification of the 7-vertex graphs according to their maximal numbers of real embeddings in the cases of the embeddings in $\mathbb{R}^2$ and $\mathbb{R}^3$, while in the case of $S^2$ we achieve this classification for all 6-vertex graphs. Additionally, by increasing the number of embeddings of selected graphs, we improve the previously known asymptotic lower bound on the maximum number of realizations. The methods and the results concerning the spatial embeddings are part of the proceedings of ISSAC 2018.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-02271782
- URN
- urn:oai:HAL:hal-02271782v2
Origin repository
- Origin repository
- UNICA