Published December 11, 2015 | Version v1
Publication

Feature extraction and machine learning for cell and tissue biomedical imaging

Others:
Morphologie et Images (MORPHEME) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Université Nice Sophia Antipolis
Éric Debreuve

Description

The purpose of this Ph.D. thesis is to study the classification based on morphological features of cells and tissues taken from biomedical images. The goal is to help medical doctors and biologists better understand some biological phenomena. This work is spread in three main parts corresponding to the three typical problems in biomedical imaging tackled. The first part consists in analyzing endomicroscopic videos of the colon in which the pathological class of the polyps has to be determined. This task is performed using a supervised multiclass machine learning algorithm combining support vector machines and graph theory tools. The second part concerns the study of the morphology of mice neurons taken from fluorescent confocal microscopy. In order to obtain a rich information, the neurons are imaged at two different magnifications, the higher magnification where the soma appears in details, and the lower showing the whole cortex, including the apical dendrites. On these images, morphological features are automatically extracted with the intention of performing a classification. The last part is about the multi-scale processing of digital histology images in the context of kidney cancer. The vascular network is extracted and modeled by a graph to establish a link between the architecture of the tumor and its pathological class.

Abstract (French)

L'objectif de cette thèse est de s'intéresser à la classification de cellules et de tissus au sein d'images d'origine biomédicales en s'appuyant sur des critères morphologiques. Le but est de permettre aux médecins et aux biologistes de mieux comprendre les lois qui régissent certains phénomènes biologiques. Ce travail se décompose en trois principales parties correspondant aux trois problèmes typiques des divers domaines de l'imagerie biomédicale abordés. L'objet de la première est l'analyse de vidéos d'endomicroscopie du colon dans lesquelles il s'agit de déterminer automatiquement la classe pathologique des polypes qu'on y observe. Cette tâche est réalisée par un apprentissage supervisé multiclasse couplant les séparateurs à vaste marge à des outils de théorie des graphes. La deuxième partie s'intéresse à l'étude de la morphologie de neurones de souris observés par microscopie confocale en fluorescence. Afin de disposer d'une information riche, les neurones sont observés à deux grossissements, l'un permettant de bien caractériser les corps cellulaires, l'autre, plus faible, pour voir les dendrites apicales dans leur intégralité. Sur ces images, des descripteurs morphologiques des neurones sont extraits automatiquement en vue d'une classification. La dernière partie concerne le traitement multi-échelle d'images d'histologie digitale dans le contexte du cancer du rein. Le réseau vasculaire est extrait et mis sous forme de graphe afin de pouvoir établir un lien entre l'architecture vasculaire de la tumeur et sa classe pathologique.

Additional details

Created:
February 28, 2023
Modified:
November 30, 2023