The Harmonious Coloring Game
Contributors
Others:
- Universidade Federal do Ceará = Federal University of Ceará (UFC)
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB)
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- Equipe associée Inria CANOE
- CNPq 404479/2023-5
- CAPES-Cofecub Ma 1004/23
- Inria
- ANR-17-EURE-0004,UCA DS4H,UCA Systèmes Numériques pour l'Homme(2017)
- ANR-21-CE48-0001,P-GASE,Jeux positionnels : complexité, algorithmes et stratégies(2021)
- ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
Description
A harmonious k-coloring of a graph G is a 2-distance proper k-coloring of its vertices such that each edge is uniquely identified by the colors of its endpoints. Here, we introduce its game version: the harmonious coloring game. In this two-player game, Alice and Bob alternately select an uncolored vertex and assigns to it a color in {1, . . . , k} with the constraint that, at every turn, the set of colored vertices induces a valid partial harmonious coloring. Alice wins if all vertices are colored; otherwise, Bob wins. The harmonious game chromatic number χ hg (G) is the minimum integer k such that Alice has a winning strategy with k colors. In this paper, we prove the PSPACE-hardness of three variants of this game. As a by-product, we prove that a variant introduced by Chen et al. in 1997 of the classical graph coloring game is PSPACE-hard. We also obtain lower and upper bounds for χ hg (G) in graph classes, such as paths, cycles, grids and forests of stars.
Additional details
Identifiers
- URL
- https://hal.science/hal-04710512
- URN
- urn:oai:HAL:hal-04710512v1
Origin repository
- Origin repository
- UNICA