OxyR-dependent formation of DNA methylation patterns in OpvABOFF and OpvABON cell lineages of Salmonella enterica
Description
Phase variation of the Salmonella enterica opvAB operon generates a bacterial lineage with standard lipopolysaccharide structure (OpvABOFF) and a lineage with shorter O-antigen chains (OpvABON). Regulation of OpvAB lineage formation is transcriptional, and is controlled by the LysR-type factor OxyR and by DNA adenine methylation. The opvAB regulatory region contains four sites for OxyR binding (OBSA-D), and four methylatable GATC motifs (GATC1-4). OpvABOFF and OpvABON cell lineages display opposite DNA methylation patterns in the opvAB regulatory region: (i) in the OpvABOFF state, GATC1 and GATC3 are non-methylated, whereas GATC2 and GATC4 are methylated; (ii) in the OpvABON state, GATC2 and GATC4 are non-methylated, whereas GATC1 and GATC3 are methylated. We provide evidence that such DNA methylation patterns are generated by OxyR binding. The higher stability of the OpvABOFF lineage may be caused by binding of OxyR to sites that are identical to the consensus (OBSA and OBSc), while the sites bound by OxyR in OpvABON cells (OBSB and OBSD) are not. In support of this view, amelioration of either OBSB or OBSD locks the system in the ON state. We also show that the GATC-binding protein SeqA and the nucleoid protein HU are ancillary factors in opvAB control.
Abstract
Ministerio de Economía y Competitividad BIO2013-44220-R
Abstract
Europea Regional Fund CSD2008- 00013
Abstract
Junta de Andalucía P10-CVI-5879
Additional details
- URL
- https://idus.us.es/handle/11441/64107
- URN
- urn:oai:idus.us.es:11441/64107
- Origin repository
- USE