Optimized Schwarz algorithms in the framework of DDFV schemes
- Creators
- Hubert, Florence
- Krell, Stella
- Gander, Martin
- Others:
- Laboratoire d'Analyse, Topologie, Probabilités (LATP) ; Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Section de mathématiques [Genève] ; Université de Genève = University of Geneva (UNIGE)
Description
Over the last five years, classical and optimized Schwarz methods have been developed for anisotropic elliptic problems discretized with Discrete Duality Finite Volume (DDFV) schemes. Like for Discontinuous Galerkin methods (DG), it is not a priori clear how to appropriately discretize transmission conditions with DDFV, and numerical experiments have shown that very different scalings both for the optimized parameters and the contraction rates of the Schwarz algorithms can be obtained, depending on the discretization. We explain in this article how the DDFV discretization can influence the performance of the Schwarz algorithms, and also propose and study a new DDFV discretization technique for the transmission conditions which leads to the expected convergence rate of the Schwarz algorithms obtained from an analysis at the continuous level.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00839286
- URN
- urn:oai:HAL:hal-00839286v1
- Origin repository
- UNICA