Neisseria meningitidis: pathogenetic mechanisms to overcome the human immune defences
Description
Neisseria meningitidis is hosted only by humans and colonizes the nasopharynx; it survives in the human body by reaching an equilibrium with its exclusive host. Indeed, while cases of invasive disease are rare, the number of asymptomatic Neisseria meningitides carriers is far higher. The aim of this paper is to summarize the current knowledge of survival strategies of Neisseria meningitides against the human immune defences. Neisseria meningitidis possesses a variety of adaptive characteristics which enable it to avoid being killed by the immune system, such as the capsule, the lipopolysaccharide, groups of proteins that block the action of the antimicrobial proteins (AMP), proteins that inhibit the complement system, and components that prevent both the maturation and the perfect functioning of phagocytes. The main means of adhesion of Neisseria meningitides to the host cells are Pili, constituted by several proteins of whom the most important is Pilin E. Opacity-associated proteins (Opa) and (Opc) are two proteins that make an important contribution to the process of adhesion to the cell. Porins A and B contribute to neisserial adhesion and penetration into the cells, and also inhibit the complement system. Factor H binding protein (fhbp) binds factor H, allowing the bacteria to survive in the blood. Neisserial adhesin A (NadA) is a minor adhesin that is expressed by 50% of the pathogenic strains. NadA is known to be involved in cell adhesion and invasion and in the induction of proinflammatory cytokines. Neisserial heparin binding antigen (NHBA) binds heparin, thus increasing the resistance of the bacterium in the serum.
Additional details
- URL
- http://hdl.handle.net/11567/507957
- URN
- urn:oai:iris.unige.it:11567/507957
- Origin repository
- UNIGE