Published May 1, 2018 | Version v1
Journal article

An Iterated Local Search to find many solutions of the 6-states Firing Squad Synchronization Problem

Others:
Laboratoire de Mathématiques Informatique et Applications [UR1_1] (LAMIA) ; Université des Antilles (UA)
Laboratoire d'Informatique Signal et Image de la Côte d'Opale (LISIC) ; Université du Littoral Côte d'Opale (ULCO)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe MC3 ; Modèles Discrets pour les Systèmes Complexes (Laboratoire I3S - MDSC) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)

Description

This paper proposes an optimization approach for solving a classical problem in cellular automata theory: the 6-states Firing Squad Synchronization Problem (FSSP). To this purpose, we introduce an original optimization function which quantifies the quality of solutions according only to the main goal of the problem without taking into account any side information about cellular automata computations. This function is used for a dedicated Iterated Local Search algorithm which finds several hundreds of new solutions of the FSSP. Note, that up to present only one human-designed solution was known which is optimal in time. Most of the new solutions found by our algorithm have lower complexity (in terms of number of transitions rules used). An analysis of the fitness landscape for FSSP explains why, counter-intuitively, local search strategy can achieve good results for FSSP.

Abstract

International audience

Additional details

Created:
February 27, 2023
Modified:
November 29, 2023