Published March 15, 2023
| Version v1
Publication
Stochastic gradient descent for linear inverse problems in variable exponent Lebesgue spaces
Contributors
Others:
- Dipartimento di Matematica [Genova] ; Università degli studi di Genova = University of Genoa (UniGe)
- UCL - Department of Computer Science ; University College of London [London] (UCL)
- Morphologie et Images (MORPHEME) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- EPSRC projects: EP/T000864/1, EP/X010740/1
- ANR-22-CE48-0010,TASKABILE,Apprentissage bi-niveau adapté à l'objectif de modéles statistiques flexibles pour l'imagerie et la vision(2022)
- ANR-21-CE48-0008,MICROBLIND,Problèmes inverses aveugles et microscopie optique(2021)
- European Project: 777826,NoMADS(2018)
Description
We consider a stochastic gradient descent (SGD) algorithm for solving linear inverse problems (e.g., CT image reconstruction) in the Banach space framework of variable exponent Lebesgue spaces ppnq pRq. Such non-standard spaces have been recently proved to be the appropriate functional framework to enforce pixel-adaptive regularisation in signal and image processing applications. Compared to its use in Hilbert settings, however, the application of SGD in the Banach setting of ppnq pRq is not straightforward, due, in particular to the lack of a closed-form expression and the non-separability property of the underlying norm. In this manuscript, we show that SGD iterations can effectively be performed using the associated modular function. Numerical validation on both simulated and real CT data show significant improvements in comparison to SGD solutions both in Hilbert and other Banach settings, in particular when non-Gaussian or mixed noise is observed in the data.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04031273
- URN
- urn:oai:HAL:hal-04031273v1
Origin repository
- Origin repository
- UNICA