Published 2008 | Version v1
Conference paper

Load Balancing and Efficient Memory Usage for Homogeneous Distributed Real-Time Embedded Systems

Other:
Models and methods of analysis and optimization for systems with real-time and embedding constraints (AOSTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Paris-Rocquencourt ; Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)

Description

This paper deals with load balancing and efficient memory usage for homogeneous distributed real-time embedded applications with dependence and strict periodicity constraints. Most of load balancing heuristics tend to minimize the total execution time of distributed applications by equalizing the workloads of processors. In addition, our heuristic satisfies dependence and strict periodicity constraints which are of great importance in embedded systems. However, since resources are limited some tasks distributed onto a processor may require more data memory than available. Thus, we propose a fast heuristic achieving both load balancing and efficient memory usage under dependence and strict periodicity constraints. Complexity and theoretical performance studies have showed that the proposed heuristic is respectively efficient and fast. Thus, an efficient memory usage is also necessary, especially in embedded systems where memory is limited. Although the total execution time of tasks is minimized some tasks could not be executed because the processors where they were distributed do not own enough memory to store the data used by these tasks. However, memory usage plays a significant role in determining the applications performances.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 30, 2023