Published 2024
| Version v1
Journal article
A fully scalable homogenization method to upscale 3-D elastic media
Contributors
Others:
- Institut des Sciences de la Terre (ISTerre) ; Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
- Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG) ; Le Mans Université (UM)-Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST) ; Nantes Université - pôle Sciences et technologie ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie ; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)
- Institut National de l'Information Géographique et Forestière [IGN] (IGN)
- Institut de Physique du Globe de Paris (IPGP (UMR_7154)) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; Université Côte d'Azur (UniCA)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- SEISCOPE consortium (https://seiscope2.osug.fr/)
- ANR-16-CE31-0022,HIWAI,Inversion homogénéisée de formes d'ondes sismiques(2016)
Description
Modelling seismic wavefields in complex 3-D elastic media is the key in many fields of Earth Science: seismology, seismic imaging, seismic hazard assessment and earthquake source mechanism reconstruction. This modelling operation can incur significant computational cost, and its accuracy depends on the ability to take into account the scales of the subsurface heterogeneities varying. The theory of homogenization describes how the small-scale heterogeneities interact with the seismic waves and allows to upscale elastic media consistently with the wave equation. In this study, an efficient and scalable numerical homogenization tool is developed, relying on the similarity between the equations describing the propagation of elastic waves and the homogenization process. By exploiting the optimized implementation of an elastic modelling kernel based on a spectral-element discretization and domain decomposition, a fully scalable homogenization process, working directly on the spectral-element mesh, is presented. Numerical experiments on the entire SEAM II foothill model and a 3-D version of the Marmousi II model illustrate the efficiency and flexibility of this approach. A reduction of two orders of magnitude in terms of absolute computational cost is observed on the elastic wave modelling of the entire SEAM II model at a controlled accuracy.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04671197
- URN
- urn:oai:HAL:hal-04671197v1
Origin repository
- Origin repository
- UNICA