Published 2019 | Version v1
Journal article

Rapid and dfferential evolution of the venom composition of a parasitoid wasp depending on the host strain

Description

Abstract: Parasitoid wasps rely primarily on venom to suppress the immune response and regulatethe physiology of their host. Intraspecific variability of venom protein composition has beendocumented in some species, but its evolutionary potential is poorly understood. We performed anexperimental evolution initiated with the crosses of two lines of Leptopilina boulardi of differentvenom composition to generate variability and create new combinations of venom factors. Theoffspring were maintained for 10 generations on two strains of Drosophila melanogaster differing inresistance/susceptibility to the parental parasitoid lines. The venom composition of individuals wascharacterized by a semi-automatic analysis of 1D SDS-PAGE electrophoresis protein profiles whoseaccuracy was checked by Western blot analysis of well-characterized venom proteins. Results madeevident a rapid and differential evolution of the venom composition on both hosts and showed thatthe proteins beneficial on one host can be costly on the other. Overall, we demonstrated the capacityof rapid evolution of the venom composition in parasitoid wasps, important regulators of arthropodpopulations, suggesting a potential for adaptation to new hosts. Our approach also proved relevantin identifying, among the diversity of venom proteins, those possibly involved in parasitism successand whose role deserves to be deepened.

Additional details

Identifiers

URL
https://hal.archives-ouvertes.fr/hal-02340472
URN
urn:oai:HAL:hal-02340472v1

Origin repository

Origin repository
UNICA