Published June 9, 2019
| Version v1
Conference paper
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Contributors
Others:
- Scientific Data Management (ZENITH) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Télécom ParisTech
- Institut of Mathematics - Polish Academy of Sciences (PAN) ; Polska Akademia Nauk = Polish Academy of Sciences = Académie polonaise des sciences (PAN)
- Centre de Mathématiques et de Leurs Applications (CMLA) ; École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
- ANR-16-CE23-0014,FBIMATRIX,Méthodes distribuées et parallèles de Monte-Carlo par chaînes de Markov pour l'Inférence Bayésienne de modèles à factorisation de tenseurs(2016)
Description
By building upon the recent theory that estab- lished the connection between implicit generative modeling (IGM) and optimal transport, in this study, we propose a novel parameter-free algo- rithm for learning the underlying distributions of complicated datasets and sampling from them. The proposed algorithm is based on a functional optimization problem, which aims at finding a measure that is close to the data distribution as much as possible and also expressive enough for generative modeling purposes. We formulate the problem as a gradient flow in the space of proba- bility measures. The connections between gradi- ent flows and stochastic differential equations let us develop a computationally efficient algorithm for solving the optimization problem. We provide formal theoretical analysis where we prove finite- time error guarantees for the proposed algorithm. To the best of our knowledge, the proposed algo- rithm is the first nonparametric IGM algorithm with explicit theoretical guarantees. Our experi- mental results support our theory and show that our algorithm is able to successfully capture the structure of different types of data distributions.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-02191302
- URN
- urn:oai:HAL:hal-02191302v1
Origin repository
- Origin repository
- UNICA