Published April 2023
| Version v1
Journal article
Sensitivity analysis of polar orbiter motion to lunar viscoelastic tidal deformation
Contributors
Others:
- Institute of Geodesy and Geoinformation Science, Technische Universität Berlin
- DLR Institute of Planetary Research ; German Aerospace Center (DLR)
- Faculty of Aerospace Engineering [Delft] ; Delft University of Technology (TU Delft)
- Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Palermo (INGV) ; Istituto Nazionale di Geofisica e Vulcanologia
Description
Abstract We investigate the impact of viscoelastic tidal deformation of the Moon on the motion of a polar orbiter. The dissipative effects in the Moon's interior, i.e., tidal phase lags, are modeled as Fourier series sampled at given frequencies associated with linear combinations of Delaunay arguments, the fundamental parameters describing the lunar motion around the Earth and the Sun. We implement the tidal model to evaluate the temporal lunar gravity field and the induced perturbation on the orbiter. We validate the numerical scheme via a frequency analysis of the perturbed orbital motion. We show that, in the case of the Lunar Reconnaissance Orbiter at a low altitude of less than 200 km, the main lunar tides and hence the potential Love numbers around the monthly and some multiple frequencies are dynamically separable. The omission of those effects in practice introduces a position error at the level of a few decimeters within 10 days.
Additional details
Identifiers
- URL
- https://hal.science/hal-04216807
- URN
- urn:oai:HAL:hal-04216807v1
Origin repository
- Origin repository
- UNICA