Published September 25, 2022
| Version v1
Publication
Identifiability of discrete Input-Output hidden Markov models with external signals
Contributors
Others:
- Heuritech
- Traitement de l'Information Pour Images et Communications (TIPIC-SAMOVAR) ; Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR) ; Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)
- Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
In this paper, we consider a bivariate process (Xt, Yt) t∈Z which, conditionally on a signal (Wt) t∈Z , is a hidden Markov model whose transition and emission kernels depend on (Wt) t∈Z. The resulting process (Xt, Yt, Wt) t∈Z is referred to as an input-output hidden Markov model or hidden Markov model with external signals. We prove that this model is identifiable and that the associated maximum likelihood estimator is consistent. Introducing an Expectation Maximization-based algorithm, we train and evaluate the performance of this model in several frameworks. In addition to learning dependencies between (Xt, Yt) t∈Z and (Wt) t∈Z , our approach based on hidden Markov models with external signals also outperforms state-of-the-art algorithms on real-world fashion sequences.
Additional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-03787440
- URN
- urn:oai:HAL:hal-03787440v1
Origin repository
- Origin repository
- UNICA