Published 2016
| Version v1
Journal article
Phyllotaxis: from patterns of organogenesis at the meristem to shoot architecture
Contributors
Others:
- Reproduction et développement des plantes (RDP) ; École normale supérieure de Lyon (ENS de Lyon) ; Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Modeling plant morphogenesis at different scales, from genes to phenotype (VIRTUAL PLANTS) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)-Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d'études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- HFSP RPG 054-2013, Inria project lab Morphogenetics, Institut de Biologie Computationelle, French Ministry of Research
Description
The primary architecture of the aerial part of plants is controlled by the shoot apical meristem, a specialized tissue containing a stem cell niche. The iterative generation of new aerial organs, (leaves, lateral inflorescences and flowers) at the meristem follows regular patterns, called phyllotaxis. Phyllotaxis has long been proposed to self-‐organize from the combined action of growth and of inhibitory fields blocking organogenesis in the vicinity of existing organs in the meristem. In this review we will highlight how a combination of mathematical/computational modeling and experimental biology has demonstrated that the spatio-‐temporal distribution of the plant hormone auxin controls both organogenesis and the establishment of inhibitory fields. We will discuss recent advances showing that auxin likely acts through a combination of biochemical and mechanical regulatory mechanisms that control not only the pattern of organogenesis in the meristem but also post-‐meristematic growth, to shape the shoot.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01413095
- URN
- urn:oai:HAL:hal-01413095v1
Origin repository
- Origin repository
- UNICA