Published September 5, 2016
| Version v1
Publication
A new asymmetric correlation inequality for Gaussian measure
- Creators
- Dutta, Kunal
- Ghosh, Arijit
- Mustafa, Nabil
- Others:
- Understanding the Shape of Data (DATASHAPE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Advanced Computing and Microelectronics Unit [Kolkata] (ACMU) ; Indian Statistical Institute [Kolkata]
- Laboratoire d'Informatique Gaspard-Monge (LIGM) ; Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS)
- ANR-14-CE25-0016,SAGA,Approximation geometrique structurelle pour l'algorithmique(2014)
- European Project: 339025,EC:FP7:ERC,ERC-2013-ADG,GUDHI(2014)
Description
The Khatri-\v{S}id\'{a}k lemma says that for any Gaussian measure $\mu$ over $\mathbb{R}^n$ , given a convex set $K$ and a slab $L$, both symmetric about the origin, one has $\mu(K \cap L) \geq \mu(K)\mu(L)$. We state and prove a new asymmetric version of the Khatri-\v{S}id\'{a}k lemma when $K$ is a symmetric convex body and $L$ is a slab (not necessarily symmetric about the barycenter of $K$). Our result also extends that of Szarek and Werner (1999), in a special case.
Additional details
- URL
- https://hal.science/hal-01360457
- URN
- urn:oai:HAL:hal-01360457v1
- Origin repository
- UNICA