Published November 21, 2015 | Version v1
Journal article

In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales

Others:
Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Earth and Mineral Sciences Energy Institute and G3 Center
Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
Total E&P ; Total E&P
Laboratoire d'étude et de recherche sur les transferts et les interactions dans les sous-sols (IRSN/PSE-ENV/SEDRE/LETIS) ; Service des déchets radioactifs et des transferts dans la géosphère (IRSN/PSE-ENV/SEDRE) ; Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN)
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM) ; Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)

Description

Key questions in fault reactivation in shales relate to the potential for enhanced fluid transport through previously low-permeability aseismic formations. Here we explore the behavior of a 20 m long N0-to-170°, 75-to-80°W fault in shales that is critically stressed under a strike-slip regime (σ1 = 4 ± 2 MPa, horizontal and N162° ± 15°E, σ2 = 3.8 ± 0.4 MPa and σ3 = 2.1 ± 1 MPa, respectively 7–8° inclined from vertical and horizontal and N72°). The fault was reactivated by fluid pressurization in a borehole using a straddle packer system isolating a 2.4 m long injection chamber oriented-subnormal to the fault surface at a depth of 250 m. A three-dimensional displacement sensor attached across the fault allowed monitoring fault movements, injection pressure and flow rate. Pressurization induced a hydraulic diffusivity increase from ~2 × 10−9 to ~103 m2 s−1 associated with a complex three-dimensional fault movement. The shear (x-, z-) and fault-normal (y-) components (Ux, Uy, and Uz) =  (44.0 × 10−6 m, 10.5 × 10−6 m, and 20.0 × 10−6 m) are characterized by much larger shear displacements than the normal opening. Numerical analyses of the experiment show that the fault permeability evolution is controlled by the fault reactivation in shear related to Coulomb failure. The large additional fault hydraulic aperture for fluid flow is not reflected in the total normal displacement that showed a small partly contractile component. This suggests that complex dilatant effects estimated to occur in a plurimeter radius around the injection source affect the flow and slipping patch geometries during fault rupture, controlling the initial slow slip and the strong back slip of the fault following depressurization.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 27, 2023