Published April 16, 2015
| Version v1
Conference paper
Detection and Tracking of Golgi Outposts in Microscopy Data
Contributors
Others:
- Academia Sinica
- Institute of Information Science (IIS Sinica) ; Academia Sinica
- Morphologie et Images (MORPHEME) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
Golgi outposts (GOPs) that transport proteins in both the anterograde and retrograde directions play an important role in determining the dendritic morphology in developing neurons. To obtain their heterogeneous motion patterns, we present a data association based framework that first detects the GOPs and then links the detection responses. In the GOP detection stage, we introduce a multi-scale Markov Point Process (MPP) based particle detector that uses multi-scale blobness images obtained by Laplace of Gaussian (LoG) for GOP appearances. This reduces the number of missed detections compared to the use of image intensity for GOP appearances. In the linking stage, we associate detection responses to form reliable tracklets and link the tracklets to form long, complete tracks. As such, high-level information (e.g., motion) is encoded in building the affinity model. We evaluate our approach on the microscopy data sets of dendritic arborization (da) sensory neurons in Drosophila larvae, and the results demonstrate the effectiveness of our method.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-01113626
- URN
- urn:oai:HAL:hal-01113626v1
Origin repository
- Origin repository
- UNICA