Sprint Mechanics in World-Class Athletes: A New Insight into the Limits of Human Locomotion
- Others:
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA7370) (SEP (EA7370)) ; Institut national du sport, de l'expertise et de la performance (INSEP)
- Motricité, interactions, performance EA 4334 / Movement - Interactions - Performance (MIP) ; Le Mans Université (UM)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université de Nantes - UFR des Sciences et Techniques des Activités Physiques et Sportives (UFR STAPS) ; Université de Nantes (UN)-Université de Nantes (UN)
- Centre de Recherche sur le Sport et le Mouvement (CeRSM) ; Université Paris Nanterre (UPN)
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM ) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
- Laboratoire Motricité Humaine Expertise Sport Santé (LAMHESS) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université de Toulon (UTLN)-Université Côte d'Azur (UCA)
Description
The objective of this study was to characterize the mechanics of maximal running sprint acceleration in high-level athletes. Four elite (100-m best time 9.95-10.29 s) and five sub-elite (10.40-10.60 s) sprinters performed seven sprints in overground conditions. A single virtual 40-m sprint was reconstructed and kinetics parameters were calculated for each step using a force platform system and video analyses. Anteroposterior force (FY), power (PY), and the ratio of the horizontal force component to the resultant (total) force (RF, which reflects the orientation of the resultant ground reaction force for each support phase) were computed as a function of velocity (V). FY-V, RF-V, and PY-V relationships were well described by significant linear (mean R(2) of 0.892 ± 0.049 and 0.950 ± 0.023) and quadratic (mean R(2) = 0.732 ± 0.114) models, respectively. The current study allows a better understanding of the mechanics of the sprint acceleration notably by modeling the relationships between the forward velocity and the main mechanical key variables of the sprint. As these findings partly concern world-class sprinters tested in overground conditions, they give new insights into some aspects of the biomechanical limits of human locomotion.
Abstract
Epub 2015 Jan 31
Additional details
- URL
- https://hal.parisnanterre.fr/hal-01467702
- URN
- urn:oai:HAL:hal-01467702v1
- Origin repository
- UNICA