Published 2019
| Version v1
Journal article
Convergence analysis of upwind type schemes for the aggregation equation with pointy potential
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Modélisation mathématique, calcul scientifique (MMCS) ; Institut Camille Jordan [Villeurbanne] (ICJ) ; École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Analyse, Géométrie et Applications (LAGA) ; Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
- BQR Accueil EC 2017
- ANR-13-BS01-0004,KIBORD,Modèles cinétiques en biologie et domaines connexes(2013)
Description
A numerical analysis of upwind type schemes for the nonlinear nonlocal aggregation equation is provided. In this approach, the aggregation equation is interpreted as a conservative transport equation driven by a nonlocal nonlinear velocity field with low regularity. In particular, we allow the interacting potential to be pointy, in which case the velocity field may have discontinuities. Based on recent results of existence and uniqueness of a Filippov flow for this type of equations, we study an upwind finite volume numerical scheme and we prove that it is convergent at order 1/2 in Wasserstein distance. This result is illustrated by numerical simulations, which show the optimality of the order of convergence.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-01591602
- URN
- urn:oai:HAL:hal-01591602v2
Origin repository
- Origin repository
- UNICA