A Hybrid High-Order method for incompressible flows of non-Newtonian fluids with power-like convective behaviour
- Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institut Montpelliérain Alexander Grothendieck (IMAG) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Description
In this work, we design and analyze a Hybrid High-Order (HHO) discretization method for incompressible flows of non-Newtonian fluids with power-like convective behaviour. We work under general assumptions on the viscosity and convection laws, that are associated with possibly different Sobolev exponents r ∈ (1, ∞) and s ∈ (1, ∞). After providing a novel weak formulation of the continuous problem, we study its well-posedness highlighting how a subtle interplay between the exponents r and s determines the existence and uniqueness of a solution. We next design an HHO scheme based on this weak formulation and perform a comprehensive stability and convergence analysis, including convergence for general data and error estimates for shear-thinning fluids and small data. The HHO scheme is validated on a complete panel of model problems.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-03273118
- URN
- urn:oai:HAL:hal-03273118v3
- Origin repository
- UNICA