Arc-chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree
- Others:
- Algorithmes, Graphes et Combinatoire (ALGCO) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Statistique et Génome (SG) ; Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
A {\it $k$-digraph} is a digraph in which every vertex has outdegree at most $k$. A {\it $(k\vee l)$-digraph} is a digraph in which a vertex has either outdegree at most $k$ or indegree at most $l$. Motivated by function theory, we study the maximum value $\Phi (k)$ (resp. $\Phi^{\vee}(k,l)$) of the arc-chromatic number over the $k$-digraphs (resp. $(k\vee l)$-digraphs). El-Sahili~\cite{ElS03} showed that $\Phi^{\vee}(k,k)\leq 2k+1$. After giving a simple proof of this result, we show some better bounds. We show $\max\{\log(2k+3), \theta(k+1)\}\leq \Phi(k)\leq \theta(2k)$ and $\max\{\log(2k+2l+4), \theta(k+1), \theta(l+1)\}\leq \Phi^{\vee}(k,l)\leq \theta(2k+2l)$ where $\theta$ is the function defined by $\ds \theta(k)=\min\{s : {s\choose \left\lceil \frac{s}{2}\right\rceil}\geq k\}$. We then study in more details properties of $\Phi$ and $\Phi^{\vee}$. Finally, we give the exact values of $\Phi(k)$ and $\Phi^{\vee}(k,l)$ for $l\leq k\leq 3$.
Abstract
International audience
Additional details
- URL
- https://hal-lirmm.ccsd.cnrs.fr/lirmm-00153978
- URN
- urn:oai:HAL:lirmm-00153978v1
- Origin repository
- UNICA