Published 2008
| Version v1
Report
Convergence and stability of a high-order leap-frog based discontinuous Galerkin method for the Maxwell equations on non-conforming meshes
Creators
Contributors
Others:
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- INRIA
Description
In this work, we discuss the formulation, stability, convergence and numerical validation of a high-order leap-frog based non-dissipative discontinuous Galerkin time-domain (DGTD) method for solving Maxwell's equations on non-conforming simplicial meshes. This DGTD method makes use of a nodal polynomial interpolation method for the approximation of the electromagnetic field within a simplex, and of a centered scheme for the calculation of the numerical flux at an interface between neighboring elements. Moreover, the interpolation degree is defined at the element level and the mesh is refined locally in a non-conforming way resulting in arbitrary level hanging nodes. The method is proved to be stable and conserves a discrete analog of the electromagnetic energy for metallic cavities. The convergence of the semi-discrete approximation to Maxwell's equations is established rigorously and bounds on the global divergence error are provided. Numerical experiments with high-order elements show the potential of the method.
Additional details
Identifiers
- URL
- https://hal.inria.fr/inria-00332277
- URN
- urn:oai:HAL:inria-00332277v1
Origin repository
- Origin repository
- UNICA