Published February 2006
| Version v1
Conference paper
Probabilistic and dynamic optimization of job partitioning on a grid infrastructure
Contributors
Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe MODALIS ; Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Analysis and Simulation of Biomedical Images (ASCLEPIOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- This work is partially funded by the French research program "ACI-Masse de données" (http://acimd.labri.fr/), AGIR project (http://www.aci-agir.org/).
Description
Production grids have a potential for parallel execution of a very large number of tasks but also introduce a high overhead that significantly impacts the execution of short tasks. In this work, we present a strategy to optimize the partitioning of jobs on a grid infrastructure. This method takes into account the variability and the difficulty to model a multi-user large-scale environment used for production. It is based on probabilistic estimations of the grid overhead. We first study analytically modeled environments and then we show results on a real grid infrastructure. We demonstrate that this method leads to a significant time speed-up and to a substantial saving of the number of submitted tasks with respect to a blind maximal partitioning strategy.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00683203
- URN
- urn:oai:HAL:hal-00683203v1
Origin repository
- Origin repository
- UNICA