Tan's Contact for Trapped Lieb-Liniger Bosons at Finite Temperature
- Others:
- Centre de Physique Théorique [Palaiseau] (CPHT) ; École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Charles Fabry / Optique atomique ; Laboratoire Charles Fabry (LCF) ; Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de physique et modélisation des milieux condensés (LPM2C) ; Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Institut Non Linéaire de Nice Sophia-Antipolis (INLN) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
The universal Tan relations connect a variety of microscopic features of many-body quantum systems with two-body contact interactions to a single quantity, called the contact. The latter has become pivotal in the description of quantum gases.We provide a complete characterization of the Tan contact of the harmonically trapped Lieb-Liniger gas for arbitrary interactions and temperature.Combining thermal Bethe ansatz, local-density approximation, and exact quantum Monte Carlo calculations,we show that the contact is a universal function of only two scaling parameters, and determine the scaling function.We find that the temperature dependence of the contact, or equivalently the interaction dependence of the entropy, displays a maximum. The presence of this maximum provides an unequivocal signature of the crossover to the fermionized regime and it is accessible in current experiments.
Abstract
International audience
Additional details
- URL
- https://hal-polytechnique.archives-ouvertes.fr/hal-01763698
- URN
- urn:oai:HAL:hal-01763698v2
- Origin repository
- UNICA