Published March 28, 2009 | Version v1
Journal article

Graph Searching with Advice

Others:
Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Laboratoire de Recherche en Informatique (LRI) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)

Description

Fraigniaud et al. [L. Blin, P. Fraigniaud, N. Nisse, S. Vial, Distributing chasing of network intruders, in: 13th Colloquium on Structural Information and Communication Complexity, SIROCCO, in: LNCS, vol. 4056, Springer-Verlag, 2006, pp. 70--84] introduced a new measure of difficulty for a distributed task in a network. The smallest number of bits of advice of a distributed problem is the smallest number of bits of information that has to be available to nodes in order to accomplish the task efficiently. Our paper deals with the number of bits of advice required to perform efficiently the graph searching problem in a distributed setting. In this variant of the problem, all searchers are initially placed at a particular node of the network. The aim of the team of searchers is to clear a contaminated graph in a monotone connected way, i.e., the cleared part of the graph is permanently connected, and never decreases while the search strategy is executed. Moreover, the clearing of the graph must be performed using the optimal number of searchers, i.e. the minimum number of searchers sufficient to clear the graph in a monotone connected way in a centralized setting. We show that the minimum number of bits of advice permitting the monotone connected and optimal clearing of a network in a distributed setting is $\Theta(nlogn)$, where n is the number of nodes of the network. More precisely, we first provide a labelling of the vertices of any graph G, using a total of O(nlogn) bits, and a protocol using this labelling that enables the optimal number of searchers to clear G in a monotone connected distributed way. Then, we show that this number of bits of advice is optimal: any distributed protocol requires $\Omega(nlogn)$ bits of advice to clear a network in a monotone connected way, using an optimal number of searchers.

Abstract

International audience

Additional details

Created:
December 3, 2022
Modified:
November 29, 2023