Published October 11, 2020
| Version v1
Conference paper
Revisiting the hypocenter-velocity problem through a slope tomography inspiration
Contributors
Others:
- Géoazur (GEOAZUR 7329) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Institut des Sciences de la Terre (ISTerre) ; Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
Description
We revisit the hypocenter-velocity problem which is of interest in different fields as for example microseismics and seismology. We show how, through a formulation based on kinematic migration focusing using two picked kinematic attributes in the two-dimensions case, the travel time and the slope (horizontal component of the slowness vector), we are able to invert jointly for the location, the origin time correction and the subsurface parameters mainly velocity. We present in this study a proof of concept validated by a toy test in two-dimensions. The method presented in this study is extendable to three-dimensions by incorporating the back-azimuth as a supplementary attribute.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-02972251
- URN
- urn:oai:HAL:hal-02972251v1
Origin repository
- Origin repository
- UNICA