Scar-Related Ventricular Arrhythmia Prediction from Imaging Using Explainable Deep Learning
- Others:
- E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- IHU-LIRYC ; Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- ANR-10-IAHU-0004,LIRYC,L'Institut de Rythmologie et modélisation Cardiaque(2010)
Description
The aim of this study is to create an automatic frameworkfor sustained ventricular arrhythmia (VA) prediction using cardiac com-puted tomography (CT) images. We built an image processing pipelineand a deep learning network to explore the relation between post-infarctleft ventricular myocardium thickness and previous occurrence of VA.Our pipeline generated a 2D myocardium thickness map (TM) from the3D imaging input. Our network consisted of a conditional variationalautoencoder (CVAE) and a classifier model. The CVAE was used tocompress the TM into a low dimensional latent space, then the classifierutilised the latent variables to predict between healthy and VA patient.We studied the network on a large clinical database of 504 healthy and182 VA patients. Using our method, we achieved a mean classificationaccuracy of 75%±4 on the testing dataset, compared to 71%±4 from theclassification using the classical left ventricular ejection fraction (LVEF).
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-03378951
- URN
- urn:oai:HAL:hal-03378951v1
- Origin repository
- UNICA