Published 2007
| Version v1
Book section
Domain decomposition algorithms for the compressible Euler equations
Creators
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jacques-Louis Lions (LJLL) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- G. Galdi
- J.G. Heywood
- R. Rannacher Edts
Description
In this work we present an overview of some classical and new domain decomposition methods for the resolution of the Euler equations. The classical Schwarz methods are formulated and analyzed in the framework of first order hyperbolic systems and the differences with respect to the scalar problems are presented. This kind of algorithms behave quite well for bigger Mach numbers but we can further improve their performances in the case of lower Mach numbers. There are two possible ways to achieve this goal. The first one implies the use of the optimized interface conditions depending on a few parameters that generalize the classical ones. The second is inspired from the Robin-Robin preconditioner for the convection-diffusion equation by using the equivalence via the Smith factorization with a third order scalar equation.
Additional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-00413519
- URN
- urn:oai:HAL:hal-00413519v1
Origin repository
- Origin repository
- UNICA