Published 2006
| Version v1
Journal article
Validity of nonlinear geometric optics for entropy solutions of multidimensional scalar conservation laws
- Creators
- Chen, Gui-Qiang
- Junca, Stéphane
- Rascle, Michel
- Others:
- Northwestern University [Evanston]
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
Nonlinear geometric optics with various frequencies for entropy solutions only in $L^∞$ of multidimensional scalar conservation laws is analyzed. A new approach to validate nonlinear geometric optics is developed via entropy dissipation through scaling, compactness, homogenization, and $L^1$-stability. New multidimensional features are recognized, especially including nonlinear propagations of oscillations with high frequencies. The validity of nonlinear geometric optics for entropy solutions in $L^∞$ of multidimensional scalar conservation laws is justified.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01312334
- URN
- urn:oai:HAL:hal-01312334v1
- Origin repository
- UNICA